Problem set 11

Due May 28, 2025

- 1. Calculate the mole fractions of lithium (Li) atoms in the first and in the second excited state at its boiling temperature ($t=1330^{\circ}$ C). The degeneracy of the ground electronic state (term ${}^{2}S_{1/2}$) is $\omega_{\circ}=2$, while the degeneracies and the excitation energies of the first and the second excited states (terms ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$, respectively), are $\omega_{1}=2$, $\Delta\epsilon_{1}=1.85$ eV and $\omega_{2}=4$, $\Delta\epsilon_{2}=1.85$ eV, respectively.
- 2. Calculate the translational and electronic contributions to the energy and to the heat capacity of 1 mol of atomic tin (Sn) gas at T=2000 K. The degeneration of the ground state is $\omega_{\circ} = 1$ and the degeneration and the relative energy of the first excited state are $\omega_{1} = 3$ and $\Delta \varepsilon_{1} = 20$ kcal/mol, respectively. The second and higher excited states can be ignored. What percentage of the total energy and total heat capacity makes the electronic contribution at 2000 K?

Hint: Determine the characteristic vibrational temperature first and use the expressions for vibrational energy and heat capacity that contain that characteristic temperature.

- 3. Calculate the characteristic vibrational (Θ_{ν}) and rotational (Θ_{r}) temperatures of nitrogen monooxide $^{14}\mathrm{N}^{16}\mathrm{O}$ and determine the percentage of molecules at (i) the first excited vibration state and (ii) the 10th excited rotational state at (a) T=298 K and (b) T=1000 K. The equilibrium bond length of the molecule is $d_{\circ}=1.15$ Å and the force constant of the N-O bond is $k_{d}=1570$ N/m.
- 4. Calculate the translational, rotational, vibrational, and electronic contributions to (i) energy and (ii) heat capacity of 1 mole of gaseous iodine ($^{127}I_2$) at T=308 K. The dissociation energy of the iodine molecule corrected to add zero-point vibrational energy is $D_{\circ}=35.6$ kcal/mol, the force constant of the I–I bond is $k_d=170$ N/m, and high-temperature approximation can be used to compute the translational and rotational contributions to energy and heat capacity.

Hint: Determine the characteristic vibrational temperature first and use the expressions for vibrational energy and heat capacity that contain that characteristic temperature.

May 14, 2025 Page 1

Energy conversion: 1 kcal/mol = 4184 J/mol; 1 eV = 96490.5 J/mol

Universal gas constant: $R = 8.3145 \text{ J/(mol} \times \text{K)}$

May 14, 2025 Page 2