Problem set 12

Due June 4, 2025

1. Consider the reaction of 1 mole of gaseous fluorine-19 $(^{19}F_2)$ with 1 mole of gaseous chlorine-35 $(^{35}Cl_2)$ to give 2 moles of gaseous chlorine fluorine $(^{35}Cl^{19}F)$.

$$^{19}\mathrm{F}_2 + ^{35}\mathrm{Cl}_2 \rightleftharpoons 2^{35}\mathrm{Cl}^{19}\mathrm{F}$$

(a) Derive the formula for the energy of this reaction. The dissociation energies of the molecules involved with zero-point oscillation energies subtracted (D_{\circ}) and their characteristic oscillation temperatures (Θ_{ν}) are listed in the table below.

Molecule	D_{\circ} [kcal/mol]	Θ_{ν} [K]
$^{19}F_{2}$	37.0	1284
$^{35}\mathrm{Cl}_2$	57.3	808
$^{35}\mathrm{Cl}^{19}\mathrm{F}$	59.5	1115

- (b) Make a plot of the energy of this reaction as a function of temperature from T = 300 K to T = 2000 K.
- 2. Consider the isotope-exchange reaction between ${}^{14}N_2$ and ${}^{15}N_2$.

$$^{14}N_2 + ^{15}N_2 \rightleftharpoons 2^{14}N^{15}N$$

- (a) Based on the formula for the equilibrium constant for the isotopicexchange reaction between hydrogen and deuterium to form hydrogen-deuterium, derive the formula for the gas-phase equilibrium constant of this reaction. The characteristic vibrational temperature of the ¹⁴N₂ molecule is $\Theta_{\nu} = 3374$ K.
- (b) Make the Arrhenius plot $\log K = f(1/T)$.
- (c) The data of the time course of the ${}^{14}N_2 {}^{15}N_2$ isotope-exchange reaction catalyzed by iron and methylamine (Joris & Taylor, *J. Chem. Phys.*, 7, 893, 1939) at two temperatures are in the table below. Check if these data approach those corresponding to the calculated equilibrium constant at long times. Comment on the results.

		quantity/1000 units of $^{14}N_2$	
$T [^{\circ}C]$	time [h]	$^{14}N^{15}N$	$^{15}N_{2}$
465	2	100.5	51.50
	17	125.8	39.00
	37	163.0	22.60
	60	194.0	14.00
500	2	108.0	48.00
	8	142.0	38.00
	21	184.0	20.00
	26	197.5	17.40
	35	202.0	13.40
	46	207.0	13.25

Hint: You can compute the apparent "equilibrium constant" at each time and compare the consecutive values with those calculated from the first principles at each of the two temperatures.