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Abshact-A new algorithm for the evaluarion of equilibrium constants from potentiometric and/or 
spectrophotometric data, based on the least-squares method has been worked out. The mathematical 
formalism eIaborated enables a very suitable description of the equilibrium problem and provides an 
analytical expression for all the quantities. In the present paper this formalism and a new method for 
calculation of equilibrium concentrations are presented. Comparison is made with earlier methods and 
a generalization-is given using this formalis& 

Many computer programmes for evaluation of equi- 
librium constants have been worked out (Gaizer, 
1979; Leg&t & MC Bryde, 1977). Unfortunately they 
are applicable only to special types of reactions like 
acidbase, complex formation or combinations of 
both. They cannot be readily generalized to other 
types of equilibria. Some, like SCOGS (Sayce, 1968). 
need good initial approximations of equilibrium con- 
stants. Most of the methods are based on the 
Gauss-Newton version of the nonlinear least-squares 
algorithm. By introducing appropriate modifications 
this method generally becomes stable, but local con- 
vergence is only first order. The Newton-Raphson 
method of minimization gives second order con- 
vergence, but the global convergence becomes worse 
because the Hessian is positive definite only in the 
region of local convergence. Both methods require 
computation of derivatives of the type a$JaX, where 
J/i is the result of ith measurement, and X, the jth 
parameter to be determined, the Newton-Rapbson 
method needs also a’+,/&Y,dX,. In programmes pub- 
lished till now, which minimize the sum of the squares 
of the d~ifferences between measured and theoretical 
absorbances or electromotive Forces these derivatives 
were approximated by divided differences (Alcock, 
1978). Programmes applying analytical expressions 
for the derivatives minimize the sum of squares of 
other quantities (Sabatini ef al., 1974, Zuberbuhler & 
Kaden, 1982). Our method utilizes analytical expres- 
sions of the derivatives of absorbances or of electro- 
motive forces. A general iterative scheme For the deter- 
mination ofequilibrium constants is as shown on the 
Following page. 

As shown in the scheme below, it is necessary to 
compute the equilibrium concentrations ir. each iter- 
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ation. In the following part of our work we describe 
a formalism which is very convenient in dealing with 
chemical equilibrium systems, especially electrolytic 
solutions. We also show how to use this formalism to 
compute equilibrium concentrations, including cases 
For which the ionic strength should be considered. In 
the second part we describe the evaluation of equi- 
librium constants using nonlinear least-squares. 

Let an equilibrium system be composed of n chem- 
ical species and assume that there are M reactions. We 
may describe the state of the system in terms of the 
concentration (number of moles, mole fraction etc.) 
of each component: 

c = [C,, c,, . . . CAT (1) 

The reactions may be described by a matrix whose 
elements are the algebraic stoichiometric coefficients, 
reactants having been transferred to the right side 
(Bauder 8c Gunthard, 1972; Petho, 1967). This matrix 
will be called the stoichiometric matrix, and indicated 
by a symbol A; ag will denote the stoichiometric 
coefficient of the ith reaction and the jth species. 
Each a@ is positive for a product, negative for a 
reactant and zero For a species .which does not 
partake in the ith reaction (Almck er al., 1978; 
Bauder & Gunthard, 1972; Petho, 1967). The change 
in the concentration of the jth species is then ex- 
pressed by the product a+i where L, is the reaction 
number assigned to the ith reaction (Bauder & 
Gunthard, 1972). The total change OF concentration 
for the jth species is given by (Bauder & Gunthard, 
1972): 
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0 ElWRY 

READ : TKE FORM OF REACTIOnS, TCTAL 

CONCENTRATIONS, SE%JLTS 0.1’ WZASUREMENTS, 

IHITIAL APPROXIllATIONS OF EC,UILIBRIUM 

CONSTANTS 

4-b 

COWlf : EQUILIBRIW CONCBNTRATIONS , 
DERIVATIVES, THEOWTICAL RES’JLTS OF 

l.!EASTJR&W&, RESIDUALS, IXCmmREI(TS 

ILI EQUILIBRIUM COI<STAH’= 

REFIN-EUCNT 

YES 
COriSTAWS LESS NO 

or in matrix notatian: 

AC = A ‘E. (2’) 

The initial state (Co) will be the set of concentrations 
resulting from the input value and the equilibrium 
state (C*) is a set of concentrations which satisfy 
equations of equilibrium: 

InKi= iatilnCj i=l,2....m (3) 
j- I 

or 

InK=AInC. (3’) 

The linear independence of the reactions means the 
linear independence of the rows of the matrix A: 
det AA7 + 0. Each system of reactions ma): be re- 
placed by an equivalent system of linearly mdepen- 

dent linear combinations of those reactions. Mathe- 
matically this means that the matrix WA and the 
vector II In K describe the same system as A and that 
In JUU,.,, det U # 0) (Bauder & Gunthard, 1972; 
Petho, 1967). The material balance is described by 
linear equations which may be written as (Alcock er 
al., 1978; Bauder & Gunthard, 1972): 

or 

7-1 -,k, q& i = 1,2, _.. rr -m (4) 

T=QC. (4’4’) 

The coordinates of vector Twill be called the balance 
constants, and the matrix Q-the balance matrix. 
Obviously. the matrix Q’= VQ and the vector 
T’ = y7.c v, m) Y (II - rn), det V # 0) describe the same 
situation as Q and T. 
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On the other hand: The A and the Q matrices are not independent of 
each other. They satisfy the following matrix cqua- 
tion (Bauder & Gunthard, 1972): 

AQ’=O (5) 

The proof of (5) is as follows: 
Let C = Co -I- A ‘c where L is a chosen vector. Then 

QC = QC” = T because the balance constants remain 
the same before and after the reaction. Then we can 
write: 

0 = p(C - Co) = QA Te = (AQ 3’~. for each E. 

This last equation is satisfied if and only if AQ r= 0. 
The proof is complete. 

When A is given, we can find Q using the following 
formula: 

Q =I-PA ~‘~3T~4m-m,.+,,1 (6) 

where R = PA,,,XRI ~A~.,_,,], det”A ~0. It can be 
easily proved that (5) holds. Furthermore. in a similar 
manner, knowing Q we can find A: 

A =Lx,i -W-‘“QYI (7) 

where 

Q =[OQ~~-n)xmiQa,-,,..-,,l,detQOzo. 

The most convenient way is to reduce A(Q) to such 
a form that 

‘d(Q’~=I,.,(I~~-,,.(,-,)). 

The balance matrix may be employed to give very 
convenient parametrical description of the equi- 
librium state: 

“_##I 
lnCj=InCi*+ x qgTi, j= 1,2,...n (8) 

i-l 

or 

InC=InC*+Qrr, (8’) 

C*-a state satisfying (3), z,, __. r,_,-parameters 
corresponding to the chemical potentials of species. 

Obviously: 

A lnC=A(InC*+Qrs)=A tnC*=lnK. 

In the equilibrium state: 

I 
c aupJ = O, i = 1.2, .._ m (9) 

j-1 

or 

&4-O 

011 is the chemical potential of thejth species) so, the 
vector ,u must be a linear combination of the rows of 
Q: 

p =p@+ RTInC (11) 

then In C = -P~/RT + Qrr = In C* + Q’7. 
Note. In the case of non-ideal solutions the equa- 

tions (3), (3’). (8). (8’) and (11) are not exact, and we 
must write: 

In K, = 2 aii fn yiCi (12) 
j-r 

In v,C, = In(&)* + C q,r, (14) 
1-1 

where 7, is the activity coefficient of thejth species. 
We want to find the equilibrium concentrations of all 
species when equilibrium and balance constants are 
given. Mathematically this means that we must solve 
the following system of equations: 

,$,n,InC,=InK, i=1,2 ,... 111 

5 q& = T, i = 1,2 ,... n -ltt. 
j- I 

05’) 

(15) 

05”) 

The following three methods can be used to solve the 
above system: 

(I) Solution of the whole system (15) treating C,? 
as the unknowns. The Newton-Raphson method can 
be used, as described in the literature (Alcock et al., 
1978). We regard this approach as unsuitable because 
of the large number of unknowns and we have not 
employed it. The iteration formulas are given in 
literature (Alcock er al., 1978). 

(II) We find the solution of the subsystem (15”) 
among those concentrations which satisfy (IS). The 
concentrations satisfy (I 5’) if and only if they satisfy 
(8). therefore we may insert (8) into (15”) obtaining 
the following system: 

The system (16) contains n - m unknowns (ri) and 
n - m nonlinear equations, so it can be solved by the 
Newton-Raphson method. The iteration fonnufas 
are: 

rw+ ‘) = r@) - [Of(r@‘)] “f<r’“‘) (17) 

In C@‘+‘)= In C@)+ QrAr*i. (18) 

k-l 

where .Y = diag[CJ, p is the number of the iteration, 
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so AZ@’ is the solution of the following linear equa- 
tions system: 

&+A?“’ = T - QC@’ (20) 

Ar(Pr=ru+h_r@), r(O) = 0. As the convergence crite- 
rion we may take 

“-ml 

(6 is a chosen tolerance. usually L = 10d4). Clearly 
I(Ar@)jl, may become unreasonably large during the 
iteration process and then the evaluation of In Cr-“+rr 
according to (18) may be practically impossible. In 
this case several modifications must be introduced. 
Define: 

L, + ,x = sg%.;c; -t IL,(x)]) 

Then the modification of Are’ is: 

(21) 

AT $‘%-Lk(Ar y)). (22) 

Usually k = 1 enables satisfactory damping. In prac- 
tice, however, no modifications of Aror are needed. 
The probkam of solvability of (20) may be considered 
further. To start the iteration process a positive state 
satisfying (3) is required. We can easily fmd it. It has 
the following form: 

where 

ci= IO” 

“-I 
a,= ,B~~,eA-‘A3ut+eA-‘log,oX),i=1,...m 

I - 
i =m + I.-n. 

(23) 

j3 should be chosen so that the orders of magnitude 
of all Cis are comparable. The method described 
above corresponds to methods which have been 
applied to find equilibrium concentrations. Let A, Ar, 
Q and C be of the form as in the literature (Ting-Po 
& Nancolas. 1972) 

A =[I,,,!- P’l Q =V'~Lm,,,,-,J 
c = [C,, c,, ._. cm, a,, a,, . . . a,_J (24) 

Ar = [A In a,, ___ A ln u”_,,Jr. 

The iteration formulas according to Eqs. (17)-(19) 
are as described in Ting-Po & Nancolas, (1972): 

a)C+ ” = t7y1 eqZ i’*n a, (25) 
r--m I--m 

CY + ‘) = C,p) exp 1 P& In aL = K, n [alip + “]‘“j 
&-I k-l 

The greatest limitation of the above method is that it 
cannot readily be applied to the case of non-ideal 
solutions. If formtda (18) were generalized to that 

case, it would give activities and not concentrations 
of components (formula (14)). Since activities are 
nonlinear functions of concentrations (for example 
formula (29)), the latter quantities could usually be 
found only by iterative methods. Concentrations are 
needed for computing the modified matrix u, which 
is now of the following form: 

where 

u’ = Q(-E”-’ +DKK’)-‘Qr (26) 

D = _A In 10 

+ 

1 
2 2J/l(I + BLJcr)z 

-d 
> 

(27) 

is the ionic strength of the solution 

cw 
z, is the charge number of the kth species (28) when 
using the Davies equation. 

In yi= -A^ In 10~: (&$ - Q) (29) 

(III) We find the solution of subsystem (15’) among 
those concentrations that simultaneously satisfy 
(15”). Concentrations satisfy (15”) if and only if they 
satisfy (2). so we can insert (2) into (15’). obtaining 
the fotlowing system of m nonhnear equations in m 
unknowns: 

i= 1,2,...m. 

Solving these by the Newton-Raphson method. we 
obtain: 

where 

p“‘Aa@r = In K - A In C”‘) (33) 

Clearly formula (32) can lead to negative concen- 
trations. To overcome this we reduce the vector Ae*r 
in the following manner (since usually Aa@’ 4 1, (22) 
is not applicable): 
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where w is a small positive number; we have used 
w = 0.01. The convergence criterion is: 

/[In K - A In Cl/, cc, usually c = IO-“. (37) 

The state used to start the iterative process must 
satisfy Co > 0 and QC = T. Usually we are given the 
state satisfying C 2 0 and QC = T. Let C satisfy 
QC = T. We must then soIve the following system of 
linear inequalities: 

P=C+AV>O. (38) 

Let C Z 0. The general method for solving {3X) is as 
follows: 

Divide the vector C in the following manner: 

[C,, c,, . . . c,, o,o, ..I O]T= [(CT’-)FiO]’ (39) 

where C,, C,, . . . C, > 0. 
Then the stoichiometric matrix becomes: 

A =[~:.,iR:x+,,l 

and (38) becomes: 

(40) 

C’i-LE>O (41’1 

R.z >O. (41”) 

Assume that eJ is the solution of (41”). CIearly, there 
is such a A(0 < L Q I) that k’ is also the solution of 
(41’) (since CL > 0), being the solution of (41”). So all 
the difficulties are connected with the solution of 
(41”). The algorithm is as follows: 

(1) Find such a column of the matrix R whose 
elements have different signs. Let it be the jth col- 
umn. If such a j exists then go to (2). If such a column 
does not exist then for each i: 

[ 1 if the non-zero elements of ith column of R 

L, = 
are positive 

- 1 otherwise. 
(42) 

Then go to (3). 
(2) For such i that Ri, Z 0, divide the ith row of R 

by lR& obtaining the matrix J?‘. Form the reduced 
system from such inequalities that Rri = 0, and from 
all the possible sums of such pairs of kth and Ith 
inequalities that R& and Rh have opposite signs. In 
order to simplyfy the system eliminate all the in- 
equalities which are equal or proportional to those 
found previously. The number of unknowns is now 
diminished by one. If the number is equal to unity, 
the reduced system can easily be solved or its in- 
solvability can be proved. Otherwise go to (I) with 
the reduced system. 

(3) We proceed to the inequaiities with an in- 
creasing number of unknowns, inserting into them 
the variables found previously and thus finding the 
succeeding variable. 

A simpler, but not general method for solving (38) 
can be used when the state satisfies the conditions 
C 3 0 and QC = T. 

Divide A and C as given by (39) and (40). In order 
to solve the system (41) assume c = [O, . . . Ed. . . . O]r. 

The k th column of the matrix R should contain at 
least one non-zero element and its non-zero elements 
should all be negative or all should be positive. If so, 
the system R. 6 > 0 i = 1,2, . . . n -p can be solved #k*. I 
and at least for one i: R&c, > 0. Then L* should have 
the following form: 

m min tk,miq o IG”/&I, I ) 

if R,k are non-negative, i = 1, . . . n --p 

efi= * (43) 
- a min {b$n>O IC.“/&l, 11 

if R, are non-positive, i = 1, .._ , n --p. 

Then 
O<ar<l. 

C;-cC,+u~&~ i=1,2 ,.._ n, 

Of course, all the coordinates of CL remain positive 
after such an operation, and some of CR coordinates 
become positive. If all the coordinates of C are 
already positive the system has been solved, else the 
procedure should be repeated. (Of course such coor- 
dinates of CR which have become positive and corre- 
sponding columns of A should be transferred to CL 
and Lr respectively.) 

Although this procedure is not a general algorithm 
for solving (38), it has given very good results in 
practice. 

Another method is to substitute all zero- 
coordinates of C by small positive numbers less than 
or equal to the balance error. This is, however, a little 
risky because even a small error in some coordinates 
of C may cause a great error in the final results. We 
are now in a position to generalize the above iteration 
formulas to the non-ideal solutions. The formulas 
(30), (33) and (34) become: 

n I 
InK,= CaVlny,+ Ca,In C,*+ $J +t 

i-1 j-1 _ 
i = 1:2,‘... m 

> 
(4) 

i= 1,2,...m (45) 
j = I, 2, . . . m 

p’@@‘A&” = In K - A(in C@) + In ye)) (46) 

where: JL@’ is the ionic strength of the solution in the 
pth iteration, 

A, = i afluk, K is defined by (28) (47) 
f-l 

For example using Davies’ equation (see (29)) we 
obtain: 

p~=pv+Lq& (48) 

where D is defined by (27), which is not very compli- 
cated. 

Solvability of the systems (20), (33) and (46): 
The matrices of (20) and (33) are of the form: 

B = SDS’ 
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where D is a positive diagonai matrix. Consider the 
quadratic form: 

when X + 0 since S has the full rank. It means that 
B is a positive definite matrix and therefore has the 
inverse. So the systems (20) and (33) are solvable. 

Examine now the matrix of (48). Consider the 
quadratic form: 

Vp’X = IjLz-“~,4r.YJj22+ D(LfX)2. 

In the case of dilute solutions D _ - I/&,,,, and 

IP- "2ATX[122 - l/C,,,. Since C, 4 l(i = I, . . . n) 

the quadratic form is greater than zero, and (46) is 
solvable. Otherwise the quadratic form becomes zero 
for X # 0, and the matrix p’ may have no inverse. 
When p’ loses its positive definite property the iter- 
ation process can diverge (Byrne & Hall, 1970). 

??o!e. Since p and u are, for C z=- 0, for positive 
definite matrices, it is convenient to use the Choleski 
decomposition to solve (20) and (33). 

Practical considerarions and numericul examples 
Calculations have been carried out using ODRA 

1204 and ODRA 1305 computers. The programmes 
have been written in an ALGOL-60 (version for the 
ODRA 1204) and in FORTRAN (for the ODRA 
1305). Methods (II) and (III) have been written as 
procedures UMDEStau and UMDES (Universal 
Method for the Determination of Equilibrium 
States). UMDES is able to deal with non-ideal solu- 
tions. Several versions of the above mentioned pro- 
grammes have been tested using a number of different 
examples. Our conclusions are as follows: 

(1) Methods (II) and (III) both give rapid quad- 
ratic local convergence. Global convergence is also 
very good, except for several ill-conditioned exampIes 
which will be considered later, and is not greatly 
dependent on the initial guesses. A typical run of (III) 
is as follows: 

(a) Calculations for a solution of ferrous sulphide in 

water. The stoichiometric matrix and the equilibrium 
constants are: 

H+ OH- Fe?+ FezOH* S HS- H,S K 
--__ 

Table 1. 

Number of lo&o ci 
iteration 1 2 3 4 

Numbm of 
iteration 

0 

: 
3 
4 
5 
6 
7 

: 

-7.oooo -4.9893 -8.3010 -8.3010 
- 7.0345 - 6.9600 -8.1107 -7.9366 
-7.1626 -6.8638 - 7.5686 -7.2382 
-0.4245 -6.5615 - 7.0799 -6.4511 
- 8.0796 -6.2481 -7.0918 - 5.8407 
-7.9685 - 6.0828 - 7.2068 -5.4315 
- 7.9547 - 6.0470 -7.1813 -55.2126 
-7.9518 -6.0482 -7.1715 -5.1458 
-7.9516 - 6.0484 -7.1707 --5.1400 
-7.9516 - 6.0484 -7.1707 -5.1399 

s 
-8.3010 

- 10.3010 
- 12.3010 
-11.6150 
- 10.9860 
- 10.5029 
- 10.2241 
- ID.1316 
- 10.1218 
- 10.1217 

m,, G 
6 7 

-8.6021 - 8.6021 
-8.0136 - 6.0186 
-7.3592 - 7.3866 
-6.6027 - 6.7269 
- 5.9794 -6.3228 
-5.5213 -6.1229 
-5.2696 -6.0859 
-5.1938 -6.0880 
-5.1873 -6.0883 
-5.1873 -66.0883 

For the explanation of the form of the stoichiometric matrix see APPENDIX. 
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An example of results of calculations for non-ideal The stoichiometric matrix has been transformed into 
solutions is as follows (obviously method (III) has form (24). Methods (II) and (III) have been used to 
been used): calculate equilibrium concentrations. Execution time 

(b) C~lculufions for rhe solution of Co(OH), in 0.5 is I2 s for method (II) and 21 s for method (III). The 
M glutamic acid. The stoichiometric matrix and the equilibrium concentrations arc: 
equilibrium constants are: [HI] = 2.4169 x lo-” [A,H-] =%I003 x IO-’ 

OH- 

I 

1: 
2 
0 
0 
II 

: 

Lr Co” + Co(OH) + Co(OH), CoL COL,‘~ H,L* l-IL.- 
__..___ -____ __- -. _ ___. _~ ___. 

0 0 

: -1 -1 
0 1 

-1 -1 
-2 -I 
-1 0 
-1 0 
-1 0 

0 0 
1 0 
0 1 

: 0 0 
0 

: : 0 
0 0 

0 
0 
0 
0 
0 

:, 
0 
0 

__-- 

0 
0 

---~ 

0 
0 
0 
0 

: 
0 
1 
0 

.- 

H,L H+ b&l K 

0 1 ‘- 14.00 
0 0 4.10 
0 0 9.20 
0 : - 14.80 
: 0 8.46 5.06 

0 -3 16.25 
0 -1 9.67 
1 -2 13.95 

.__~_--- -~-- 

The Davies equation has been used to calculate the 
activity co_efficients. We have assumed A = 0.51, 
Bfi = 1.0, c = 0.3. 

[BH+] = 1.1121 x 10m4 [BHA]= 1.3629 x 1O-4 

The result is as follows: 

WA] = 6.6150 x lop4 [B] = 2.2050 x 10 - ” 

[I&H+]= 2.1263 x IO-” [A-.] = 3.0209 x IO-5 

(B denotes triethylamine and HA picric acid). 

Species lo&, c, log,, CiY, 

OH- - 6.5509 - 6.6855 
L=- - 3.7073 - 4.2456 
Co’ + - 0.8908 - 1.4291 
Co(OH) l - 3.8800 - 4.0145 
Co(OI-0, - 5.6000 - 5.6Doo 
COL - 0.6147 - 0.6147 
CoL,2- - 0.9219 - 1.4602 
HsL+ - 9.8046 - 9.9392 
HL- - 1.7555 - I.8901 
I&L - 4.9246 - 4.9246 
II+ - 7.1799 - 7.3145 

where H,L denotes glutamic acid. 
(2) If the number of reactions is less than the 

number of balance equations, method (III) is pre- 
ferred because there are fewer unknowns. Otherwise 
method (II) is preferred. But for the calculations for 
non-ideal solutions we must always use method (III). 
The following example illustrates these points: 

Calculations for the solurion of2.475 x lo- ‘M pic- 
ric acid and 9.9 x IO-‘M triethyiamine in acetonitrile. 
Methods (II) and (III) have been used. Initial states 
have been defined using formulas (23) with /I = 5 for 
(II) and (43) for (III) respectively. 

The stoichiometric matrix and the equilibrium con- 
stants are as fohows (Ralph, E. K. & Gilberson W. 
R.; Kolthoff & Chantooni, 1966): 

(3) The calculation of the matrices p and (T. The 
calculation of the matrix p needs, according to (34) 
$ x n x m x (m + 1) multiplications. For D : x n x 
(n -m) x (n - m f I) multiplications are required. 
The number of multiplications can considerably be 
reduced if we transform the ,4(Q) matrix into the 
form (24), (ln K or T must be transformed simulta- 
neously). Then we need onIy $ x (n -m) x 
m x (m + I) for the calculation of p and g x 
m x (n -m) x (n - m -t I) for 0 matrix. Let n = 8, 
m = 5 (as in a real situation). Without modification 
the number of multiplications is equal to 360 for p 
and 144 for cr matrix. After employing the trans- 
formation the number of multiplications reduces to 
135 for the p and 90 for the cr matrix. This is a very 
considerable reduction. The reduction of time re- 
quired for the calculations is illustrated by the follow- 
ing examples: 

(a) The example is like (2). Without the trans- 
formation of the stoichiometric matrix the execution 
time is 36 s, with transformation time in 23 s. The 
method (III} has been used. 

(b) In the case (I b) the execution time was 103 s 
without transformation and 56s with transforma- 
tion. 

(4) The use of the Choleski factoring instead of the 
Gauss decomposition for the solution of (20) or (33) 
also reduces the execution time. The reduction is 
however not as considerable as in the case of the 

H+ BH+ HA BrH+ A,H - BHA B A- K 

1 -1 0 
I 0 -1 
0 -I 0 
0 0 -I 
0 -I 0 

0 0 0 I 0 4.792 x 10W20 
0 0 0 0 1 1.1037 X lo-‘* 
I 0 -l 0 8.6715 x IO2 
0 I 

x 
0 -I 4.0536 x 10’ 

0 0 1 0 -1 4.0568 x 104 
.-- ~_____._. 
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modification (3). In the case of {3a) the execution time 
was 21 s when applying the Choleski method. 

(5) Consider the following example: 

since ODRA carries I1 significant digits only. Thus 
the p matrix is ill-conditioned for system (i). This 
difficulty has been overcome in (ii) since the matrix A 
contains only one non-zero element in the column of 
the stoichiometric matrix corresponding to H +, In 
conclusion, when the iteration process diverges be- 
cause of the fact that more than one non-zero element 
is in the column corresponding to the smallest Ci, the 
stoichiometric matrix should be transformed into the 
form in which only one non-zero element is in that 
column. As for matrix 6, it is possible for one 
concentration to be much greater than the others 
when the corresponding column of the matrix Q 
contains more than one non-zero element. If such is 
the case then transform Q and T as A and In K in the 
above case. This is, however, a very rare situation. 

H+ BH+ B HA A- BHA 

(i) A = i : 

-1 1 0 0 0 

00-l 10 0 -1 0 O-l I I 

H+ BH’ B HA A-- BHA 

1 -110 00 

(ii) A’ = 0 -1 1 1 -1 0 0 - 100-I 1 I 

where B denotes triethylamine and HA picric acid. 
The initial concentrations and the equilibrium 
constants for i and ii are: 

H+ 7.8950 x lO-6 
BH+ 6.3950 x 10-j 
B 5.1921 x 10-j 
HA 7.1055 x 10m4 
A- 7.1845 X 10-5 
BHA 7.1055 x 10m4 

[mole x dm-‘1 

6) K, = 10-‘8.46 (ii) K; = 1O-‘*.46 

K2 = lo-” K; = 10-7.4 

K, = 103 K; = 10’ 

(in acetonitrile) 

Method (III) has been used for the calculation of 
equilibrium concentrations. The results are as fol- 
lows: 
(i) Diverged. 100 iterations were allowed. 

llln K - A In I?“‘))), = 28.7 

(ii) Converged in 16 iterations. 

m+] = 4.0269 x 1O-2o 

[BH+] = 5.1956 x lo-=’ 

[B] = 4.4737 x 10 -’ 

[HA] = 2.0922 x 10 - I2 

[A-] = 5.1956 x IO-’ 

[BHA] = 2.6994 x lo-‘. 

Description (i) and {ii) are for the same system, so the 
calculations should have given the same result. But 
problem (i) diverges; this is due to the finite machine 
accuracy. Write: 

Clearly, near the final solution the hydrogen ion 
concentration becomes much smaller than the other 
concentrations (see the results of the calculations for 
(ii)). Thus: 

(6) As we have shown above, introducing the ionic 
strength may lead to divergence of the iteration 
process. The following example illustrates this: 

Calculations for the mixture of 0.1 M Fe(SCN),, 
0.1 M Fe(SCN), and 0.1 M H,Oz. Complex for- 
mation, redox and acid-base reactions are taken into 
consideration. The calculations have been carried out 
using method (III) with and without introducing 
activity coefficients. The equilibrium constants 
presented in the literature have been used (Inczedy, 
1974): 
[i) with activity coefficients Davies’ equation with 

_‘I = 0.5, sa = 1.0, d = 0.3 

has been used. 

II.4 In Cnoo) - In KH, = 442 

~(‘O”) = 4.23 

(ii) without activity coefficients 

log,,[H+] = -5.8711 

log,,[OH-] = -8.1289 

log,,[Fe’+] = -4.5844 

log,0[Fe(SCN)2+] = -3.0838 

log,,[Fe(SCN),*] = - 1.9812 

log,,[Fe(SCN)J = - 1.3837 

log,,[Fe(SCN),-] = - 1.3883 

log,,[Fe(SCN),*-] = -2.1887 

log,,[Fe*+] = - 15.0705 

log,,[FeSCN ‘1 = - 14.8709 

log,,[FeOzH2 +] = - 2.4873 

log,dH,OJ = - 1.3303 

log,,[HO,-] = - 7.2039 

log,,[e,,] = -23.4438 

log,,[SCN -1 = -0.8005 

log,,[FeOH +] = - 1.0144. 

As is shown above, the ionic strength became unrea- 
sonably large during the iteration process, a situation 
that is unphysical. The remedy is to calculate first 
without the ionic strength corrections until the region 
of the final solution is attained. and then to introduce 
the correction. 
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APPENDIX 

(I) The number of bafanre equorions. It is clear (see (5)) 
that the rows of the matrix A are orthogonal to those of Q. 
The rows of A span a m-dimensional space which is a 
s&space of a ndimensional space. Thus the dimension of 
the space orthogonal to that spanned by the rows of A 
(which moreover is a subspace of the same ndimensional 
space) is n - m. Thus the rank of Q, and consequently the 
number of linearly independent balance. equations is n - m. 

(2) Uniqueness o/ rhe solution of (15). Obviously, one 
initial state Co precisely corresponds to one particular state 
of equilibrium C* (it is the result of thermodynamical con- 
siderations). But it should be shown that the system (15) has 
no other physical, that is positive solutions. Let Co be a 
solution of (15). Every other solution must satisfy: 

and therefore: 

Clearly, the system (50) has the zero-solution. Assume that 
there are non-zero solutions, that is L # 0 and r # 0: 

~,a~~=C~(ex4~~~~~?~)-1). 

Since 

sign(cxp(zgqkIrh) - 1) = sign:<q+* 

and for each j C,O 5 0, the following inequalities hold: 

Since 6 # 0, there is such j’ that ,?, arrr. l t f 0 and 

“,g; qk, .+ # 0. Then: 

and summing (5 I) over all j’s: 

Since 2 akiqO = (AQ r)*, = 0, then (52) gives a contradic- 

tion. l%n there are no non-zero solutions. 
(3) Some practical aspects of the stoichiometric matrix. 

Consider the system of the example la. The reactions have 
the following form: 

H,O = H; + OH, 

Fe!& = Fe&’ + Sz 

H,S, = H; + HS;, 

HS, = H& + Sk- 

Fe&+ = HG + FeOHG 

and then the full stoichiometric matrix is: 

H4 OH, Fe&+ 

1 I 0 
0 0 
1 0 ; 
I 0 0 
I 0 -I 

The relative change of CHlu is negligible, then the expres- 
sions containing In CHlo are approximately constant and can 
therefore be transferred lo the right ofeqns (3). After that 
operation we obtain a simplified system A’ln C’= In K’ 
such that the matrix A’ does not cuntain the column 
corresponding to Hz0 and In C’ does not contain In C,,. 
Although the change of In C,, is negligible, the change of 
CHfi is not. Therefore a similar procedure cannot be applied 
to the balance equations. The matrix Q (and the vector T) 
should be transformed into such a form which contains only 
one non-zero element in the column corresponding to H,O 
(see p. S), and then the row containing that element should 
be removed. Then the column corresponding to H,O can bc 
removed from the balance matrix (since it contains only 
sro-elements). A similar operation can be performed in 
order to remove FeS,.,. Because CF$;,= const one ca? 
remove the column corresponding to I,1 from the stol- 
chiometric matrix, as in the case of H,O. Since the system 
is heterogenous, the quantity of moles should, instead of 
concentrations be inserted into the balance equations. Re- 
moving of F&i,, from the balance matrix is like in the case 
of H,O. The reduced balance matrix corresponds yet to a 
homogenous system and the balance equations may there- 
fore be divided by the volume of the liquid phase, giving 
equations which contain concentrations. 

The equations system to be solved is: 

where: 

In C, + In C, = In K, 

In C, + In C, = In K2 

In C, + In C, - In C, = In K, 

In C, + In C, - In C, = In 4 

In C, - In C, + In C, 5 In & 

c, = c,o + 6, + 6, + 64 + 6) 

C, = c*o + 6, 

c, = c,o + .+ - c5 

c, = c.0 + t5 

C, = C,” + c2 + 6, 

c, = c,o + c3 - L, 

c, = c,o - L3. 
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